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What sets the discovery potential of colliders?

1. Energy
= determines the scale of phenomena to be studied

2. Luminosity (collision rate)
= determines the production rate of “interesting” events

Energy x Current

Luminosity =
J Focal depth x Beam quality

— Scale L as E? to maximize discovery potential at a given energy
= Factor of 2 in energy worth factor of 10 in luminosity

* Critical limiting technologies:
= Energy - Dipole fields, accelerating gradient, machine size
= Current - Synchrotron radiation, wake fields
= Focal depth - IR quadrupole gradient
= Beam quality - Beam source, machine impedance, feedback
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Beams have internal (self-forces)

* Space charge forces
= Like charges repel

—> [Like currents attract

* For a long thin beam

E_(V/cm)= 00 Ly (A)
’ Rbeam (Cm)

l A

B, (gauss) = pean ()
SR, (cm)
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Net force due to transverse self-fields

In vacuum:

Beam’s transverse self-force scale as 1/y2

=> Space charge repulsion: E
=> Pinch field: By ~ 1

sp,L Nbeam

beam ~ Vz Nbeam ~V, Esp

Fsp L — 4 (Esp,J_ T v, X BO) ~ (I'Vz) NbeamN Nbea /Yz

m

Beams in collision are notf in vacuum (beam-beam effects)
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We see that € characterizes the beam while
B(s) characterizes the machine optics

* P(s) sets the physical aperture of the accelerator because

the beam size scales as o _(s) =/e B.(s)
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Example: Megagauss fields
in linear collider

1 B ——
electrons po sitrons

~ e u

At Interaction Point space charge cancels; currents add
==> strong beam-beam focus

--> Luminosity enhancement
--> Very strong synchrotron radiation

Consider 250 GeV beams with 1 kA focused to 100 nm
B cak ~ 40 Mgauss
==> Large AE/E
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Types of tune shifts: Incoherent motion

 Center of mass does not move
* Beam environment does not “see” any motion

 Each particle is characterized by an individual amplitude &
phase
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Incoherent collective effects

* Beam-gas scattering
= Elastic scattering on nuclei => leave physical aperture
—> Bremsstrahlung
= Elastic scattering on electrons leave rf-aperture

= [nelastic scattering on electrons

> reduce beam lifetime

* Ion trapping (also electron cloud) - scenario
= Beam losses + synchrotron radiation => gas in vacuum chamber
—> Beam ionizes gas
—> Beam fields trap ions
= Pressure increases linearly with time

= Beam -gas scattering increases

* Intra-beam scattering
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Intensity dependent effects

* Types of effects

—> Space charge forces in individual beams
—> Wakefield effects
—> Beam-beam effects

% General approach: solve

" 1
X + K(S)X = ')/I’}’l/)’ZCZ Fnon—linear
% For example, a Gaussian beam has
€2N 2 2
F, = . (l—e'r 120 ) where N = charge/unit length
2me,y°r
* Forr<o )
e’N
Fo. = r
O 4me y?

US PARTICLE ACCELERATOR SCHOOL



Beam-beam tune shift

Ap,(y) ~ (Felec + F )é (once the particle passes l/2 the other bunch has passed)

mag
]
N, e

% Fory>> 1, ~F & = —beam”
y elec mai lWh y ;
e‘’c e’ N
SOA =~2— = L y w
Py(7) 2c g cwh Y
A !
o Ay’ ~'y similar to gradient error k As with k As = &y
P, y
% Therefore the tune shift is
* * 2
AQ = _B As = 1p N where r, = c ;
4 ywh Ad5te mc
% For a Gaussian beam
r BN
AQ = _eﬁ_
2 )/Aint
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Effect of tune shift on luminosity

% The luminosity is _ JeaNiV,

4'Iqint
* Write the area in terms of emittance & f at the IR
Aint = OxOy = \//3;896 O\/ﬁ;kgy

* For simplicity assume that

L

B. & R
>x<=_:>/3x=_[))y:>/3x€x=_/3y
[5}’ Ey Ey 8)’
% In that case
Alnt =€x/3y

* And

beam

4z.B, B,
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Increase N to the tune shift limit

* We saw that

AQ T
’ 2 }/Aint
or
N=AQy%_AQ 2y8ﬁ/3 %yg AQ,

Therefore the tune shift limited luminosity 1s

IE

*

P,

“~ Qy fcollleg

~ A
r 48x[3y O

e
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Incoherent tune shift for in a synchrotron

Assume: 1) an unbunched beam (no acceleration), & 2) uniform
density in a circular x-y cross section (not very realistic)

X" + (K(S) + KSC(S))X =0 = Q,, (external) + AQ, (space charge)

For small “gradient errors™ k.

2R 2Rx

1 1
AQ, =~ f K, (), (s)ds = — f Ko (s)B, (s)ds

where 2r 1
Kee ==——5,33
ea’ f’y’c
1 2% 2t B.(s) r,RI /B (s) r,RI
AQX=_4 f 3.3 ds=-——5— 2 — T 3.3
T, efyc a ef’y’c\a“(s) e’y ce,
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Incoherent tune shift limits current
at injection

, N
27B°y° €,

using [ = (Nefc)/(2nR) with
N...number of particles in ring

€, y----emittance containing 100% of particles

¢ “Direct” space charge, unbunched beam in a synchrotron

¢ Vanishes fory » 1

¢ Important for low-energy hadron machines
s Independent of machine size 2nR for a given N

¢ Overcome by higher energy injection ==> cost
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Injection chain for a 200 TeV Collider
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Beam lifetime

Based on F. Sannibale USPAS Lecture
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Finite aperture of accelerator
==> loss of beam particles

* Many processes can excite particles on orbits larger than
the nominal.

= [f new orbit displacement exceed the aperture, the
particle 1s lost

* The limiting aperture 1n accelerators can be either physical
or dynamic.

—>Vacuum chamber defines the physical aperture

—>Momentum acceptance defines the dynamical aperture
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Important processes in particle loss

* Gas scattering, scattering with the other particles in the
beam, quantum lifetime, tune resonances, &collisions

* Radiation damping plays a major role for electron/positron
rings
= For 10ns, lifetime 1s usually much longer

 Perturbations progressively build-up & generate losses

% Most applications require storing the beam as long as
possible

==> [imiting the effects of the residual gas scattering

==> ultra high vacuum technology
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What do we mean by lifetime?

* Number of particles lost at time ¢ 1s proportional to the
number of particles present in the beam at time ¢

dN =-a N (t) dt with o =constant

% Define the lifetime T = 1/o;; then |N =N,e™ "

* Lifetime 1s the time to reduce the number of beam particles
to 1/e of the initial value

* Calculate the lifetime due to the individual effects (gas,
Touschek, ...)

1 I 1 1
Ty DoReE

Ttotal
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Is the lifetime really constant?

* In typical electron storage rings, lifetime depends on beam
current

* Example: the Touschek effect losses depend on current.

=> When the stored current decreases, the losses due to Touschek
decrease ==> lifetime increases

* Example: Synchrotron radiation radiated by the beam
desorbs gas molecules trapped in the vacuum chamber

=> The higher the stored current, the higher the synchrotron radiation
intensity and the higher the desorption from the wall.

= Pressure in the vacuum chamber increases with current
==> Increased scattering between the beam and the residual gas

==> reduction of the beam lifetime
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Examples of beam lifetime measurements

ALS

DA®NE

4

Electrons Positrons

US PARTICLE ACCELERATOR SCHOOL



Beam loss by scattering

* Elastic (Coulomb scattering) from
residual background gas

= Scattered beam particle undergoes
transverse (betatron) oscillations.

= [f the oscillation amplitude exceeds
ring acceptance the particle is lost

* Inelastic scattering causes
particles to lose energy
= Bremsstrahlung or atomic excitation

= [f energy loss exceeds the
momentum acceptance the particle is
lost

Incident positive%
particles
B, o

____———»/.

Rutherford cross section

nucleus

Bremsstrahlung cross section
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Elastic scattering loss process

: dN "
* LOSS rate 18 » _¢beam particlesN moleculeso e
Gas
" N N fc
beam particles ~— =
Abeam T;”ev Abeam ring

N =nA

molecules beam ring

o fLost dGRutherford 4O — f e f dORutherford <in6do

QMAX

2
dGR _ 1 Z beam Z gase 1
S1n

dQ2 (47[80) 2Bcp *(6/2)

US PARTICLE ACCELERATOR SCHOOL

[ MKS]




Gas scattering lifetime

* Integrating yields

2

dN tnNBc(Z, Ze’ 1

EGas __(4'71’—8())2 /D)Cp tanz(GMAX/Z)
Loss rate for gas elastic scattering [ MKS]

P

[Torr]

760

* For M-atomic molecules of gas n =M n,

* For a ring with acceptance ¢, & for small 6 (Ohiax ) = <Z>A>

==>

2

4 2
S 760 TTE /J’Cp2 £, (MKS]
})[Torr] ﬁCMnO Z Ze </3T>

Inc
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Inelastic scattering lifetimes

* Beam-gas bremsstrahlung: if E, 1s the energy acceptance

g _ 15314 1
)™ T ala, B,

nTorr]

* Inelastic excitation: For an average B3

2

- 1025 EO[GeV] 8A[Mm]

TGafn
as hours| P[nTorr] <ﬁn>[m]
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ADA - The first storage ring collider (e*e’)
by B. Touschek at Frascati (1960)

The storage ring collider idea was invented by R.
Wiederoe in 1943

— Collaboration with B. Touschek

— Patent disclosure 1949
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Touschek effect:
Intra-beam Coulomb scattering

* Coulomb scattering between beam particles can transfer

transverse momentum to the longitudinal plane

= If the p,+Ap, of the scattered particles is outside the momentum

acceptance, the particles are lost

= First observation by Bruno Touschek at ADA e*e ring

* Computation is best done 1n the beam frame where the

relative motion of the particles 1s non-relativistic

—> Then boost the result to the lab frame

1

Tousch.

C

1 N beam 1

}/3 0,0,05 (APA /po )2

cC

1

beam

1 N
)/3 AbeamaS VRF
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Transverse quantum lifetime

* At a fixed s, transverse particle motion is purely sinusoidal

X, = a\//?nsin(a)ﬁnH qp) T=x,y

% Tunes are chosen 1n order to avoid resonances.

= At a fixed azimuthal position, a particle turn after turn sweeps all
possible positions between the envelope

* Photon emission randomly changes the “invariant” a &
consequently changes the trajectory envelope as well.

* Cumulative photon emission can bring the particle
envelope beyond acceptance in some azimuthal point

= The particle is lost
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Quantum lifetime was first estimated by
Bruck & Sands

2
T, erT%exp(Aﬁﬂaﬁ) T=x,y

T

Transverse quantum lifetime

2
where o, = B,& + (DT %) T=x,y

0

T, = transverse damping time

T, =T, exp(AEj /202)

0
Longitudinal quantum lifetime

* Quantum lifetime varies very strongly with the ratio
between acceptance & rms size.

Values for this ratio >6 are usually required
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Lifetime summary
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In colliders the beam-beam collisions also deplete
the beams

This gives the luminosity lifetime
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LEP-3
Life gets hard very fast

William A. Barletta

Director, US Particle Accelerator School
Dept. of Physics, MIT
Economics Faculty, University of Ljubljana
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Physics of a Higgs Factory

* Dominant decay reactionise” +e =>H=">W + Z
* My, +M, =125 +91.2 GeV/c?
==> set our CM energy a little higher: ~240 GeV
* Higgs production cross section ~ 220 tb (2.2 x 107 cm?)
¥ Peak L =10*cm!s! =<L>~ 103 cm! 5!
% ~30 fb'! / year ==> 6600 Higgs / year
% Total cross-section at ~ 100 pbs(100GeV/E)?

We don’t have any choice about these numbers
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Tune shift limited luminosity of the collider

2 " AN
Rc/aeT 1 Nr"“(El)_ e (Pbeam) i = ep
. * o L I * | — 2 * - s
4me,p S, ermcdme,\ b ermc” 4me \ P | _
I Linear or Circular

\

Tune shift

Or 1in practical units for electrons

34 O, I cm
L=217010 (1 + )Qy(

e o

o B

y

o,

L=2170103310m( 2 )(I)
B N1GeV/ALA
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We can only choose I(A) and *(cm)

#* For the LHC tunnel with £, .. =2/3, p ~3000 m

ipole

* Remember that

p(m) =3.34 (1 G:V/c) (é) (%)

* Therefore, B, ., =0.134 T

* Each beam particle will lose to synchrotron radiation

E*(GeV)

U, (keV) = 88.46
o(m)

or 6.2 GeV per turn
Iy, << 0.1 A
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I =7.5 mA ==> ~100 MW of radiation

beam

%

# Then L=260 1033(1 Cm)

* Therefore to meet the luminosity goal

<B" B >1"2~0.1 cm

* Is this possible? Recall that 1s the depth of focus at the IP

The “hourglass effect” lowers L

*
==>0"~o0,
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Bunch length is determined by V

* The analysis of longitudinal dynamics gives

GS=

cac 9, _ ¢’ poA[J’o Nc O,
stnc pO 2717q h f02 V COS<(pS) pO

where o, = (AL/L) / (Ap/p) must be ~ 10-> for electrons to
remain 1n the beam pipe

* To know bunch length we need to know Ap/p ~ AE/E

* For electrons to a good approximation

AEz\/E <E. >

beam photon

and

E[GeVT
plm]
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For our Higgs factory €_.. = 1.27 MeV

crit

% Therefore o
& ~—" ~(0.0033
p

* The rf-bucket must contain this energy spread in the beam

* As U, ~ 6.2 GeV,
\Y > 6.2 GeV + “safety margin” to contain AE/E

rf,;max

* Some addition analysis

(A—E) = \/ AR (2cosg, + 2, — 7)sing,

E mha E

¢ sync

* The greater the over-voltage, the shorter the bunch
_ e i= \/ ¢’ PoBo N O,

0] i
° Q p() 2.7'L'q hfozvmaXCOS(QDS) po
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For the Higgs factory...

* The maximum accelerating voltage must exceed 9 GeV

= Also yields 0, = 3 mm which is okay for B* = 1 mm

* A more comfortable choice 1s 11 GeV (it’s only money)
—> ==> CW superconducting linac for LEP 3

=> This sets the synchronous phase

% For the next step we need to know the beam size
o, =+/B.g fori=x,y

* Therefore, we must estimate the natural emittance which 1s
determined by the synchrotron radiation AE/E
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The minimum horizontal emittance
for an achromatic transport

2

Y

e =3.84x1073| L |pmin

X, min

mefters

X

3

~3.84 x107"y? (H“Ch”’m“’) meters

4415

~yY
e, ~0.01 g,



Because o, is so small,
we cannot achieve the minimum emittance

* For estimation purposes we will choose 20 ¢_. as the
mean of the X & y emittances

* For the LHC tunnel a maximum practical ipole length i1s
15m
—> A triple bend achromat ~ 80 meters long ==> 0 = 2.67x10-

<e> ~ 7.6 nm-rad ==> Oy, erce

=2.8 um

How many particles are in the bunch?

Or how many bunches are in the ring?
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We already assumed that
the luminosity is at the tune-shift limit

* We have
Ncy 1 /Nr\(EI 1 N (P, |
L - : . - i |I —| = . i ezm [ = e,p
dme B S, ermcdme,\ P ermc” 4me \ P
‘\ / Linear or Circular
Tune shift
Nr, ey
* Or Q= N = Q
4mey r,
* So, N, ~ 8 x 10! per bunch

* L ..n = 7.5 mA ==> there are only 5 bunches in the ring
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Space charge fields at the collision point

1 B ——

electrons positrons

~ e u

At Interaction Point space charge cancels; currents add
==> strong beam-beam focus

--> Luminosity enhancement
--> Very strong synchrotron radiation

This 1s important in linear colliders

What about the beams in LEP-3?
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At the collision point...

I..=N /40, =>1_. =100kA

peak peak

* Therefore, at the beam edge (20)
B =1(A)/5r(cm) = 36 MG !

* When the beams collide they will emit synchrotron
radiation (beamstrahlung)

E[GeVT

£ [keV]=2218
plm]

=0.665- E[GeV] - B[T]

* For LEP-3 E_. =35 GeV ! (There are quantum corrections)

crit
The rf-bucket cannot contain such a big AE/E

Beamstrahlung limits beam lifetime & energy resolution of events
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There are other problems

* Remember the Compton scattering of photons up shifts the
energy by 4 y?

% Where are the photons?
=> The beam tube is filled with thermal photons (25 meV)

% In LEP-3 these photons can be up-shifted as much as 2.4 GeV

—> 2% of beam energy cannot be contained

=> We need to put in the Compton cross-section and photon density to find
out how rapidly beam is lost
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